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ABSTRACT Using temporal analysis of fMRI (functional Magnetic Resonance Imaging) data, we can
characterize dynamic changes in brain connectivity over time. However, dynamic temporal analysis of fMRI
data is challenging due to the high dimensionality of the datasets. Another fundamental challenge of dynamic
temporal analysis of fMRI is the presence of non-neural artifacts that add sources of variation in the data
that are not directly related to brain activity. For example, when data are acquired at different scanners at
different temporal sampling rates and later analyzed as a single dataset, we have to contend with different
number of image snapshots for different subjects. Also, high-frequency scans lead to more fine-grained
temporal snapshotting than low-frequency scans. These factors can obscure true neural signals and lead to
inconsistent characterization of dynamic brain connectivity across scans. Existing graph-based solutions
often struggle with parameter sensitivity, since their outcomes depend heavily on selecting an arbitrary
correlation threshold for defining network edges. In contrast, topological data analysis (TDA) sweeps across
all threshold values to track the persistence of connectivity features, making it more robust for capturing
fine-grained temporal dynamics. Clustering methods become imperative in this context as they offer a
powerful means to uncover underlying structures within the high-dimensional temporal data. We address
these challenges by developing a topological data analysis based temporal clustering pipeline targeted
for dynamic functional connectivity derived from fMRI datasets that can preserve the dynamics of the
temporal datasets andmask out the non-neural variability induced by varying sampling rates. The TDA-based
pipeline extracts robust features that are invariant to non-neural noise and uses them to perform temporal
clustering. We evaluate our framework by performing temporal clustering of resting-state fMRI-derived
dynamic functional connectivity brain networks obtained from 316 subjects, each of whom was scanned
thrice using different temporal sampling periods. The efficacy of our TDA-based pipeline is compared
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against three alternative approaches: direct time-series clustering, PCA-based dimensionality reduction and
clustering, and a traditional fully connected network analysis pipeline with MDS-based dimensionality reduction.
Additionally, we demonstrate that for a majority of cases, the number of clusters remains consistent for the
same subjects scanned at different temporal sampling rates– showcasing the greater robustness of our TDA-based
pipeline compared to other pipelines. The TDA pipeline achieved higher overlaps (59 %) in optimal cluster
numbers across sampling cohorts, as well as higher pairwise similarity (74-77 %) between subjects’ cluster
solutions. This indicates that incorporating network topology via TDA enables more robust clustering of temporal
fMRI datasets despite changes in sampling rates.Furthermore, we validate our method on a clinical dataset
(ADHD-200). The TDA-based pipeline successfully captures consistent clustering patterns across different sites
and scanning protocols, with higher stability of cluster assignments (> 80% similarity) and better separation
of subject-level dynamics compared to existing approaches. This reinforces the method’s robustness in multi-
site, multi-condition settings. Our results demonstrate that incorporating network topology via TDA significantly
enhances the reliability of temporal clustering in fMRI studies, offering a robust framework for studying brain
dynamics across heterogeneous acquisition settings.

INDEX TERMS Temporal fMRI, topological data analysis, persistent homology.

I. INTRODUCTION
Temporal fMRI (functional Magnetic Resonance Imaging)
analysis [1], [2] is a technique used to study brain activity
over time, with a focus on capturing changes in neural
activity as they unfold during various cognitive tasks or in
resting state conditions. Resting-state functional MRI (rs-
fMRI), in particular, examines spontaneous fluctuations in
brain activity that occur when a subject is at rest and not
performing a specific task. This approach aims to identify
intrinsic functional connectivity patterns within the brain,
which can reveal networks and interactions that are present
even in the absence of external stimuli. Temporal resting-state
fMRI analysis is crucial for understanding how the brain
processes information dynamically and how the interactions
between different brain regions change with time, referred
to as dynamic functional connectivity (DFC). It has been
shown that DFC is very important for characterizing the
healthy brain [3], [4], as well as in various brain disorders [5],
[6], [7].
Temporal fMRI data typically has a temporal resolution

on the order of hundreds of milliseconds to a couple of
seconds, with each time point representing a snapshot of
brain activity at a particular moment during the scan. DFC
calculated from rs-fMRI data sampled at different rates tends
to capture underlying dynamics evolving at different scales.
Also, rs-fMRI data with higher sampling frequency tends to
have more time points compared to that sampled at lower
frequency for the same experimental duration. More time
points tend to increase the robustness of DFC estimates.
Given these factors, DFC calculated from rs-fMRI data
sampled at different frequencies are not comparable. This
is problematic since different groups tend to have different
sampling rates owing to other factors, such as the capabilities
of the MRI scanner as well as SNR available for a given field
strength and field of view. Given the ever-increasing demands
on sample size, pooling data acquired from multiple sites has
become a priority, but that seems impractical as data across
sites is not acquired using the same sampling frequency. Here,

we seek to address this problem. Our reasoning is that a
video captured at two different frame rates must convey the
same content, even though they might not be of the same
quality. Our quest is to devise a method that would capture
the underlying content correctly, irrespective of how fast or
slow the temporal dynamics are sampled. Obviously, DFC is
not doing this job. Instead, we propose to use topological data
analysis (TDA), which has been shown to characterize the
structure underlying the data, which may be invariant to how
the data is acquired [8].
Within the domain of functional brain imaging research,

there is a growing trend towards the adoption of topological
data analysis (TDA), an algebraic topology-based mathemat-
ical approach [9]. More recently, topological data analysis
tools such as persistent homology (PH) have been utilized
to study complex networks [10] including fMRI network
dynamics [11], [12], [13], [14]. The persistence of topological
features over a range of spatial scales provides insight
into the robustness and stability of network architecture.
Persistent homology generates topological barcodes that
serve as a quantitative fingerprint for complex networks.
Specifically, persistent homology tracks the emergence and
disappearance of topological features such as connected
components, loops, and higher-dimensional cavities across
a range of thresholds applied to the network. Impor-
tantly, statistical distances between barcodes, such as the
Wasserstein distance(WD) [15], [16], can be computed to
quantitatively compare network topologies robustly. Thus,
persistent homology barcodes provide a distinctive topologi-
cal signature and metric for interrogating complex network
architecture over the traditional graph-based tools [8].
Recent studies have further extended the use of TDA
to unsupervised learning and clustering applications. For
example, TDA-based clustering of functional brain net-
works has been successfully applied to Alzheimer’s disease
cohorts, revealing significant associations between functional
topology and brain morphometry using Wasserstein distance
kernels [17]. In task-based fMRI, TDA pipelines have
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outperformed traditional vectorization methods in classifying
condition-specific activity, highlighting their ability to cap-
ture individualized functional profiles [11]. More broadly,
TDA-based classifiers have shown promising results across
domains like trajectory classification and imbalanced multi-
class datasets, underscoring the versatility and power of
topological representations in complex data settings [18],
[19]. We harness this capability to compare the similarities of
temporal dynamics of brain networks extracted from different
sampling periods. We develop a TDA-based statistical data
processing pipeline targeted for temporal fMRI datasets that
preserves the temporal dynamics of rs-fMRI datasets with
the ability to mask out the non-neural variability induced by
varying temporal sampling rates.

We evaluate the efficacy of our framework using three
data cohorts, each of which corresponds to rs-fMRI data
acquired for a subject at a different temporal sampling rate.
The input to our pipeline comprises functional connectivity
networks (FCNs) derived from rs-fMRI data acquired from
316 subjects, scanned at three temporal frequencies: fhigh =

645ms, fmedium = 1400ms, and flow = 2500ms. High
temporal frequency (fhigh = 645ms) corresponds to fine-
grained snapshotting, yielding a total of 754 time-steps;
medium temporal frequency (fmedium = 1400ms) scan yields
336 time-steps; and on the other end of the spectrum is
low-frequency scans of flow = 2500ms, which yields 86 time-
steps. The total number of adjacency matrices (FCNs) used
in our study is therefore 371,616 (= 316 × 754 for fhigh +

316 × 336 for fmedium + 316 × 86 matrices for flow).
In essence, our statistical pipeline deals with a complex high-
dimensional space, the three cohorts are each 4-dimensional
spaces, of resolution 113 × 113 × timestep# × subjects#.
113×113 corresponds to the spatial resolution of each of the
individual FCN (adjacency matrix), capturing the pairwise
connectivity strengths among the 113 spatial regions of the
brain. The timestep# is respectively 754, 336, and 86 for the
three temporal frequencies fhigh, fmedium, and, flow. subject#
is 316. Demonstrating any notion of similarity across such
a high-dimensional space is a challenging task, which is
further exacerbated by the fact that the resolution across the
three spaces varies (along the timestep# dimension). To solve
this challenge, we rely on a well-established notion that the
resting-state brain typically oscillates between a handful of
discrete states. We develop a statistical pipeline that uses
persistent homology from TDA to gradually reduce the
high-dimensional temporal data to two dimensions – which
is then reduced further to a one-dimensional scalar quantity
that captures the total number of clusters. The novelty of this
paper is twofold: (1) developing a statistical framework based
on TDA techniques to effectively reduce the complex high
dimensional space into simple 1D space (corresponding to the
number of clusters), and (2) demonstrating that the number of
temporal clusters of same subjects across the three temporal
sampling rates is indeed the same, unlike existing methods.
To further evaluate the performance of our TDA pipeline,

we developed three alternative statistical data analysis

pipelines that utilize the same datasets. These pipelines
represent different approaches to data processing and dimen-
sionality reduction that have been used traditionally, allowing
for a comprehensive comparison of our TDA pipeline against
other established methods.

1) Direct time-series clustering pipeline: The first
pipeline employs a direct clustering across time, where
the original time-series data is reshaped into a suitable
format for clustering algorithms. This direct approach
bypasses the need for dimensionality reduction, retain-
ing the full temporal dynamics of the data.

2) PCA-Based dimensionality reduction and cluster-
ing pipeline: The second pipeline utilizes principal
component analysis (PCA) to reduce the dimen-
sionality of the time-series data before applying a
clustering algorithm. PCA identifies the principal com-
ponents, which are linear combinations of the original
features that capture the maximum variance in the
data. By retaining only the most significant principal
components, PCA reduces the dimensionality while
preserving the essential information for clustering.

3) Traditional dynamic FCN analysis pipeline with
MDS-based dimensionality reduction: The third
pipeline adopts a traditional dynamic FCN (dFCN)
analysis approach similar to our TDA pipeline with
multidimensional scaling (MDS) for dimensionality
reduction. This pipeline calculates the pairwise correla-
tion coefficients between all 113 brain regions at every
time point, resulting in a temporally varying correlation
matrix. MDS is then applied to the correlation matrix to
reduce its dimensionality while preserving the under-
lying connectivity patterns. This approach retains the
inter-subject connectivity information, which differs
from the aforementioned pipelines.

To determine the appropriate number of clusters for our
TDA and the three nonTDA pipelines, we employ the
k-means clustering algorithm in conjunction with the silhou-
ette criterion. Since the number of clusters is insufficient to
effectively capture the similarities between different temporal
sampling periods, we conduct cluster distance comparisons
both across the data cohorts (fhigh, fmedium, and flow) and
between individual data cohort pairs (fhigh - fmedium, flow -
fmedium, and fhigh - flow). We further evaluate the efficacy
of the TDA pipeline with a real clinical dataset. Detailed
descriptions of these pipelines and statistical methods can be
found in Section III and Section IV.
Our key contributions include:
1) Novel TDA pipeline for preserving temporal

dynamics: We introduce a novel topological data
analysis (TDA) pipeline specifically designed for
processing resting state fMRI datasets that preserves
the temporal dynamics of functional connectivity
networks, enabling more accurate and robust analysis
of brain connectivity patterns.

2) Evaluate pipeline accuracy: We evaluate the perfor-
mance of our TDA pipeline on a resting state fMRI

VOLUME 13, 2025 172261



A. R. Shovon et al.: Topology Assisted Clustering of Temporal fMRI Brain Networks With Use-Case

dataset comprising 371,616 adjacency matrices from
316 subjects at three temporal frequencies. To ensure
the efficacy of the TDA-based pipeline, we compare
it with three alternative approaches: direct time-series
clustering, PCA-based dimensionality reduction and
clustering, and traditional fully connected network
analysis pipeline with MDS-based dimensionality
reduction technique.

3) Robustness to non-neural variability: Additionally,
we investigate the robustness of the TDA pipeline to
variations in data acquisition parameters, specifically
examining the impact of temporal sampling rates
mitigating the influence of non-neural variability on
temporal fMRI datasets.

4) Validation on multi-site ADHD dataset: We fur-
ther validate our method on the ADHD-200 dataset
to test generalizability in a multi-site setting with
heterogeneous scanning protocols. The TDA pipeline
achieves higher inter-site consistency in cluster struc-
ture and better subject-level reproducibility, confirming
its applicability to broader clinical and developmental
neuroscience settings.

5) Open-source implementation for reproducibility:
We open-source the source code, documentation, and
data for all components of our work on GitHub
(https://github.com/harp-lab/TemporalBrainPH/),
ensuring reproducibility and accessibility.

The remainder of this paper proceeds as follows. First,
Section II provides background on related work and the pro-
gression of topology-based functional connectivity network
analysis. Next, Section III introduces our proposed end-to-
end topological data analysis pipeline for temporal brain
rs-fMRI data, and Section IV describes the nonTDA-based
data processing pipelines for comparison. Section V then
presents an evaluation of our TDA pipeline by applying it
to analyze temporal dynamics in resting-state fMRI datasets.
Finally, Section VI offers a discussion of the results and
implications, and Section VII concludes with a summary of
our contributions and directions for future work.

II. RELATED WORK
The application of topological data analysis (TDA) in
network analysis extends beyond conventional graph theory,
harnessing computational topology tools to characterize
network or data structure architectures with greater adapt-
ability [20]. TDA-driven technique has also demonstrated
encouraging outcomes in modeling transitions among brain
states within fMRI datasets [21]. Persistent homology,
as an advanced tool of TDA, is being applied to analyze
the topological features of data, providing a powerful
framework for studying the evolution and persistence of
structural patterns across various scales [22], [23], [24],
[25]. The use of persistent homology to analyze functional
connectivity networks (FCNs) from resting state fMRI data
is on the rise [12], [13], [14], [26]. Persistent homology

can quantify structural changes in time-varying graphs,
providing both topological summaries and visualizations to
identify temporal patterns and anomalies [27]. Recently,
we demonstrated that FCN metrics are statistically similar
across varied sampling periods [8] only for TDA and not
for traditional pipelines. This suggests persistent homol-
ogy provides a robust topological representation of FCNs
invariant to acquisition parameters, potentially removing
noise in multi-site studies and improving group comparison
effect sizes. Multi-site fMRI studies, despite their advantages
in increasing sample size and generalizability [28], [29],
introduce variability across scanners and protocols that
can undermine statistical power and validity. Differences
in acquisition parameters and processing methods across
sites can lead to non-biological variability in functional
connectivity metrics, posing challenges in large-scale fMRI
research [30]. Furthermore, multi-site designs can potentially
impact the measurement of temporal dynamics in fMRI
studies.

The study of temporal variability in rs-fMRI data has
gained significant attention in recent years, as it provides
valuable insights into the dynamic nature of functional
brain networks and their relevance to human cognition [31].
Growing evidence suggests that functional brain networks
exhibit temporal variability, reflecting the dynamic inter-
play between different cognitive states, arousal levels, and
external stimuli [32]. One of the widely used techniques
for characterizing temporal variability in rs-fMRI data is the
sliding-window correlation analysis. This approach involves
dividing the time series into overlapping temporal windows
and estimating FCNs for each window [32], [33]. By tracking
the changes in functional connectivity patterns across these
windows, the dynamic nature of brain networks can be
captured, and their evolution over time can be investigated.
However, this method relies on predefined window lengths
and may not fully capture the inherent temporal dynamics
of the data. To address these challenges, existing techniques
for analyzing FCNs derived from rs-fMRI have largely
relied on graph theory to compute metrics like clustering
coefficient and node degree [34], [35]. These measures
summarize individual weighted networks and enable com-
parisons between FCNs, either at the level of nodes/links
or using whole-network summaries. However, graph-based
methods have significant limitations. First, common graph
metrics depend heavily on the parcellation scheme used to
define network nodes [36]. Second, graph analysis requires
binarizing network links based on an arbitrary threshold,
discarding valuable weighting information [37]. While
weighted graph analysis has been proposed, such measures
still vary with network density [10]. Multi-threshold analysis
can mitigate this issue but remains constrained by density
effects [38].
Principal component analysis (PCA) is another a useful

technique for reducing the high dimensionality of rs-fMRI
datasets before applying clustering [39]. By transforming
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the data into a lower dimensional space of uncorrelated
principal components, PCA enables more efficient and robust
clustering of large-scale rs-fMRI data [40]. Studies have
shown PCA preprocessing can remove noise and highlight
the most informative spatial and temporal features in rs-fMRI
for improved clustering performance [41], [42] compared
to direct clustering approaches [43]. Another approach
to characterizing temporal variability is through temporal
independent component analysis (ICA) [44]. Temporal ICA
aims to identify temporally distinct functional modes or
networks from the rs-fMRI data, revealing the underlying
temporal structure and dynamics of brain activity. The appli-
cability of temporal principal component analysis (PCA) as
a preprocessing step for sliding-window spatial independent
component analysis (sICA) of rs-fMRI data is evaluated
by analyzing the consistency of PCA-retained subspaces
across overlapping time windows [45]. While PCA-based
dimensionality reduction has proven useful for rs-fMRI
clustering, it is limited to capturing linear relationships and
may miss critical topological features in complex functional
connectivity networks. Advanced network science techniques
are needed to overcome these limitations and characterize
topology more comprehensively in a manner invariant to
connectivity density or regional parcellation. For example,
topological data analysis (TDA) provides a powerful frame-
work for analyzing weighted networks across scales using
methods like persistent homology. TDA yields topological
summaries that are stable to network density variation.
Further, TDA can be applied in a resolution-invariant manner
using expansive parcellations. By moving beyond graph
theory, TDA-based network analysis can uncover robust and
informative topological signatures while avoiding common
density and parcellation dependencies. More recently, TDA
techniques, such as Mapper and persistent homology, have
been introduced as promising tools for studying the temporal
variability of rs-fMRI data. Mapper offers a low-dimensional
representation of the high-dimensional rs-fMRI data while
preserving its topological features [21]. This technique can be
particularly useful for visualizing and exploring the temporal
variability and overall structure of functional connectivity
patterns. Persistent homology, on the other hand, captures
the evolution and persistence of topological features (e.g.,
connected components, loops, voids) across different scales
or time points, providing a quantitative measure of the
stability and dynamics of functional brain networks [8].
Recently, Chung et al. demonstrated the use of a TDA
technique that estimates the state spaces of dynamically
changing functional brain networks during resting state by
clustering based on the Wasserstein distance metric [46]
and proposed a dynamic-TDA framework to distinguish
topological patterns of gender-specific brain networks [47].
Furthermore, TDA is well-suited for characterizing changes
in network topology over time, providing new avenues
for investigating temporal dynamics in fMRI connectivity
[48], [49].

FIGURE 1. Topological data analysis based temporal clustering pipeline
for evaluating the robustness of persistent homology applied to dynamic
functional connectivity (DFC) matrices calculated from rs-fMRI data
acquired using three different sampling periods for the same subjects
(flow = 2500ms(left), fmedium = 1400ms(center), and fhigh =
645ms(right)).

III. TOPOLOGICAL DATA ANALYSIS BASED TEMPORAL
CLUSTERING PIPELINE
In this section, we present our end-to-end topological data
analysis-based clustering pipeline targeted for temporal
resting state fMRI datasets that preserve the temporal
dynamics of the high dimensional brain networks. This
pipeline masks out non-neural variability in temporal fMRI
datasets and demonstrates similarity across temporal cohorts
acquired at different sampling frequencies. Our TDA pipeline
integrally relies on persistent homology, which, unlike
traditional graph analytic approaches, permits analyzing a
range of thresholds to gather connectivity information from
FCNs.

Our processing pipeline aims to exploit the commonly
known fact that the resting-state brain typically oscillates
between a handful of discrete states [50], [51]. This implies
that it is potentially possible to group the temporal timesteps
into a discrete number of states. This inherently is a data
clustering problem. Therefore, at the heart of our data
processing pipeline, we have data clustering across time,
which is applied to topological features extracted from
the rs-fMRI datasets. A schematic representation of our
data processing pipeline can be seen in figure 1. Here
we can see the inputs are the three temporal cohorts
acquired from sampling 316 subjects at three temporal
frequencies (flow = 2500ms, fmedium = 1400ms,
and fhigh = 645ms).

A. MATHEMATICAL FOUNDATIONS AND APPLICATION OF
PERSISTENT HOMOLOGY TO RESTING-STATE FMRI
Persistent homology (PH) is an algebraic topology method
from Topological Data Analysis (TDA) domain used to study
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qualitative features of data across multiple scales. It operates
on the principle of building simplicial complexes, which are
geometric constructs consisting of vertices, edges, triangles,
and their higher-dimensional counterparts. These complexes
evolve over a range of parameters, providing insights into the
topology of the underlying dataset.

Formally, for a given set of points (point cloud) X ,
persistent homology tracks the birth and death of topological
features as a parameter ϵ varies. At each threshold ϵ,
a Vietoris-Rips complex Rϵ(X ) is constructed by con-
necting points xi, xj ∈ X if the distance between them
d(xi, xj) is less than or equal to ϵ. As ϵ grows, simplices
(vertices, edges, triangles) appear and merge, reflecting
changes in topology. Persistent homology captures these
changes as persistent barcodes or persistence diagrams,
encoding the lifespan (birth to death intervals) of topological
features.

In the context of rs-fMRI, PH provides a robust
methodology to analyze FCNs, which represent interac-
tions between brain regions as correlation-based adjacency
matrices. Direct analysis of these networks can be chal-
lenging due to high dimensionality and inherent noise.
Persistent homology addresses these challenges by interpret-
ing each brain region as a vertex, forming Vietoris-Rips
complexes based on distances derived from correlations.
By varying the threshold ϵ, persistent homology captures
and quantifies the emergence and merging of connected
components, offering robust summaries of complex temporal
dynamics.

Our pipeline specifically employs 0-dimensional persistent
homology to characterize the evolution of connected compo-
nents within dynamic FCNs. This approach facilitates robust
and interpretable topological signatures suitable for temporal
clustering analyses across diverse data acquisition parameters
and sampling frequencies.

Our end-to-end TDA pipeline has the following steps:
1) Generate FCNs from rs-fMRI data: We applied

dynamic-windowed Pearson correlation on the fMRI
dataset (as used by us before in Jia et al [4]) to generate
the dFCNs from data acquired with different acqui-
sition parameters (fhigh = 645ms, fmedium = 1400ms,
and flow = 2500ms.) as a data pre-processing step
(Section III-B). This provides an FCN at each time
point.

2) Create distance matrix from FCNs: The extracted
FCNs at each time point are then converted into
distance matrices as a weighted graph (Section III-C).

3) Extract persistent barcodes from distance matrix:
In this step, we extract persistent diagrams (0-
dimensional barcodes) from the distancematrices using
persistent homology to identify the topological features
from the matrices (Section III-D).

4) Temporal clustering on PD to prove the resiliency
of different data acquisition parameters: Finally,
we apply temporal clustering on the extracted barcodes
to see the similarity between the topological features

FIGURE 2. The FCN and extracted topological feature as 0-dimensional
barcodes for subject 32 at different time points for temporal sampling
periods, i.e. high temporal frequency (fhigh = 645ms) (top), medium
temporal frequency (fmedium = 1400ms) (center), and low temporal
frequency flow = 2500ms (bottom). The matrix size is 113 × 113,
corresponding to 113 brain regions.

extracted using different data acquisition parameters
(Section III-E).

B. FCN GENERATION FROM RS-FMRI DATA
We sourced the structural T1-weighted and rs-fMRI data
from the freely accessible Enhanced Nathan Kline Institute
Rockland Sample database (NKI-RS) [52]. The MRI data
was collected using a 3T Siemens Magnetom Tim Trio
scanner. The acquisition parameters for the T1-weighted
structural data included: isotropic voxels of 1.0 mm with
176 slices, a repetition time (TR) of 1900 ms, an echo time
(TE) of 2.52 ms, and a field of view (FOV) of 250 ×

250. Resting state fMRI data was gathered using multiband
echo-planar imaging (EPI) [53] from each participant using
three distinct acquisition protocols with varying parameters.
The first protocol used 3.0mm isotropic voxels with 40 slices,
a TR of 645 ms, a TE of 30 ms, a FOV of 222 × 222 mm,
900 volumes, and a multi-band factor of 4. The second
protocol used 2.0 mm isotropic voxels with 64 slices, a TR
of 1400 ms, a TE of 30 ms, a FOV of 224 × 224 mm,
404 volumes, and a multi-band factor of 4. The third protocol
used 2.0 mm isotropic voxels with 38 slices, a TR of 2500ms,
a TE of 30 ms, a FOV of 216 × 216 mm, 120 volumes,
and a multi-band factor of 1. Even though the three datasets
from each participant are identified with the corresponding
TR, they differ in several other scan parameters, such as
the number of volumes, multi-band factor, FOV, and voxel
size. The MRI data underwent a standard pre-processing
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pipeline, which included the removal of the first five
volumes, slice time correction, and motion correction. T1-
weighted anatomical images were aligned to the mean
functional images, which were then spatially registered to
a standard MNI152 template. Nuisance variables such as
low-frequency drifts, and motion parameters were regressed
out. Unwanted physiological fluctuations (signals from white
matter and cerebrospinal fluid) were eliminated using aCOM-
PCor (anatomical component-based noise correction). After
excluding subjects that did not pass quality control, we iden-
tified 316 subjects with usable data from all three acquisition
protocols. We then obtained mean time series from 113 brain
regions (using the Yeo parcellation template [54]) for
each subject and acquisition protocol. Using Pearson’s
correlation, we estimated FCNmatrices from thesemean time
series.

At this stage, we generate one FCN for each timepoint
using dynamic-windowed Pearson’s correlation as in our
previous work [4]. Briefly, this method uses sliding temporal
windows to calculate Pearson’s correlation to be assigned
to each time point. The width of the temporal window is
dynamically determined by the stationarity of the statistical
properties of the time series within the window, determined
by the Augmented Dickey-Fuller test. Each FCN is stored
as a symmetric adjacency matrix M with size 113 × 113,
where Mij represents the correlation coefficient between
brain nodes i and j. The dataset consists of three temporal
frequencies (fhigh = 645ms, fmedium = 1400ms, and flow =

2500ms). There are 316 subjects for each temporal frequency.
High temporal frequency (fhigh = 645ms) yields a total
of 754 time-steps; medium temporal frequency (fmedium =

1400ms) scan yields 336 time-steps; and on the other end
of the spectrum is low-frequency scans of flow = 2500ms
yields 86 time-steps. The total number of adjacency matrices
is 371,616(316 × 754) + (316 × 336) + (316 × 86) with
a dimension of 113 × 113. Figure 2 (left column) shows an
example of the extracted FCNs for subject 32, for the three
sampling periods at different time points.

C. CREATION OF MATRICES FROM FCNS
Usually, topological data analysis uses point cloud data in
metric configuration. We confine the weighted networks
from fMRI data in distance matrices in our TDA pipeline
before applying TDA techniques. Then, we extract persistent
barcodes from the distance matrices.

We use popular Pearson’s correlation coefficients
pcc(pt , qt ) to measure the linear correlation between any
two data points (nodes) pt and qt at time t in the fMRI
data [55]. However, correlation coefficients do not directly
represent distances, which are often required for clustering
algorithms or other analyses. Therefore, we transform the
correlation coefficients into a distance metric using the
following formula:

d(pt , qt ) =

√
1 − pcc(pt , qt )2

This transformation ensures that higher positive correlations
(closer to 1) are mapped to smaller distances (closer to 0),
while lower correlations (closer to 0) or negative correlations
are mapped to larger distances. The temporal indexing t
indicates this is a temporally dynamic dataset, and the
correlations and distances are calculated between node pairs
at each time point.

D. EXTRACTION OF PERSISTENT BARCODES FROM
DISTANCE MATRICES
Unlike traditional graph analytic approaches, persistent
homology permits analyzing a range of thresholds to gather
connectivity information from a given FCN. Figure 3 shows
an example of using persistent homology to record the
changes of topological features over the changes of distances
using zero-dimensional barcodes. Vietoris-Rips filtration on
the given 5 × 5 FCN is applied to capture the changes in
the number of connected components for different parameters
of d . Using persistent homology, we capture topological
features from the distance matrices extracted from the fMRI
FCNs. This section overviews topological feature extraction
using persistent barcodes and the distance metric we have
used. The existing literature contains the details on these
topics [24], [56].

1) EXTRACTION OF TOPOLOGICAL FEATURES USING
PERSISTENT HOMOLOGY
Persistent homology can extract topological features from
a topological space. The homology of the space can be
divided into groups based on the dimensions of the features.
A topological space X can be divided into homology groups
Hi(X) for i = 0, 1, 2, . . . where Hi(X) represents the ith
homology group. Each homology group Hn(X) denotes the
number of n-dimensional holes in the topological space X.
For example, the H0(X) homology group shows the number
of connected components, H1(X) homology group shows the
number of holes, H2(X) homology group shows the number
of voids in the topological space X.
In this paper, we useH0(X) homology group (0-dimensional)

to extract the number of connected components from the
rs-fMRI FCNs (at each time point) as topological features.
Figure 3 shows a simple example of using persistent
homology to extract the topological features from a given
FCN. The table at the bottom right in Figure 3(b) represents
the adjacency matrix of an FCN with five nodes. Persistent
homology captures the changes in topological features over
distance thresholds (ϵ) between the nodes. In a point cloud,
F with p nodes, two nodes (x, y) are marked as connected
with an edge if the distance d(x, y) is less than threshold
ϵ. In this scenario, they form a 1-Simplex. When three
nodes are connected with each other for some value of ϵ,
they form 2-Simplex and so on. For a given ϵ, the graph
is called a Rips complex represented by Rips(F, ϵ). These
continuous changes in the value of ϵ result in the changes
in topological features. Vietoris-Rips filtration captures the
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FIGURE 3. An example of persistent homology to extract topological features using 0-dimensional barcodes. The adjacency matrix is of size 5 × 5.

increasing value of ϵ for which a new Rips-complex, in other
words, a new topological feature, is being generated [57].
Figure 3(a) shows the extraction of different topological
features in various thresholds of ϵ using Vietoris-Rips
filtration.

In this example, for each real number t where topological
features are changed, we consider them important events and
store these values of t . Here, t represents the filtration value
used in the persistent homology analysis, which is derived
from the adjacency matrix (bottom right table of Figure 3)
representing the FCN. As the filtration value t increases,
topological features (such as connected components) can
appear, merge, or disappear in the simplicial complex
constructed from the data. For instance, at some time t0,
a topological feature, a component is being created, and
at time t1, it is merged with another component. We keep
track of the birth as tbirth = t0 and death as tdeath =

t1 for each component. The time of the (tbirth, tdeath) of the
topological features is visualized as barcodes. The span of
time for each feature tdeath − tbirth is called the persistence
of that feature. Figure 3(b)(left) shows the barcodes for
the given FCN. At t = 0, five topological features
are born as five independent (connected) components.
At t = 3.6, two components are merged; thus, the death
of a component is recorded at t = 3.6. Therefore, the
persistence of that component is 3.6. Similarly, at t =

6.32, another component is merged with a persistence of
6.32. For 0-dimensional persistence barcodes, this process
continues until there is only one connected component.
This last component never dies; thus, the persistence of this
component is ∞. The 0-dimensional persistence barcodes

in Figure 3(b)(left) represent the birth and death of the
topological features, which is the changes in the number
of connected components of the FCN. Each horizontal
bar begins at the birth of a component and ends at the
death of each component in the barcodes representation.
While higher-order features such as 1-dimensional homol-
ogy (loops) can in principle be extracted, we restrict
our analysis to H0 for two reasons: (i) computational
tractability on large, time-varying FCNs, and (ii) prior
evidence that connected components provide stable and
interpretable topological features for functional brain
networks.

2) FORMATION OF PERSISTENT DIAGRAMS AS SIGNATURES
FOR THE FCNS
The 0-dimensional barcodes extracted from the functional
connectivity networks (FCNs) represent the evolution of
connected components over distance thresholds. In our
pipeline, we generate 0-dimensional persistent barcodes for
each FCN. Each FCN has 113 vertices that form the finite set
of pointsF where the value di represents the pairwise distance
between the points. We extract 0-dimensional barcodes using
persistent homology for all the 371,616 FCNs ((316× 86)+
(316 × 336) + (316 × 754)). Figure 2 displays illustrations
of the extracted barcodes at various time points across
three different temporal sampling periods(fhigh = 645ms,
fmedium = 1400ms, and flow = 2500ms) for a single
subject (subject 32). After this stage, we get timestep# ×

113 × 2 as 0-dimensional barcodes for each of the sampling
periods.
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A persistent barcode can be represented with a persistent
diagram without information loss where the birth and death
of a component (a topological feature) are represented
as a point on the X-axis and Y-axis, respectively. These
points on a two-dimensional surface as a persistent dia-
gram can be used for statistical inference to prove that
persistent homology is resilient to different data acquisition
parameters. By forming the persistent diagrams from the 0-
dimensional barcodes of each FCN, we obtain topological
signatures that quantify the evolution of connected com-
ponents over distance thresholds in the functional brain
networks. The distance between points in the persistent
diagram provides a stability measure, allowing us to compare
topological signatures across subjects. Thus, these signa-
tures are used as features for statistical analysis in our
experiments.

E. TEMPORAL CLUSTERING ANALYSIS
The literature shows the usability of earth moving distance,
also known as Wasserstein distance (WD), for statistical
inference of persistent diagrams [15], [16]. We use WD as
a metric to compute the distance between two persistence
diagrams extracted from two FCNs. WD represents the
minimum value that is computed in the match calculation
between the points of two persistent diagrams. TheWD value
of two similar persistent diagrams is smaller than two dissim-
ilar persistent diagrams. This WD metric assists in proving
the hypothesis of similarity between the persistent diagrams
extracted from different data acquisition parameters, such as
sampling rates.

The temporal clustering analysis is to evaluate our
hypothesis of the similarity of the fMRI FCNs obtained
from different data acquisition parameters, such as different
temporal sampling rates (TR). Our dataset includes three
data cohorts: fhigh = 645ms, fmedium = 1400ms, and
flow = 2500ms. High temporal frequency (fhigh =

645ms) has a total of 754 time-steps; medium temporal
frequency (fmedium = 1400ms) scan yields 336 time-
steps; and low temporal frequency flow = 2500ms yields
86 time-steps for each of the subjects. Figure 1 represents
the TDA pipeline we develop for the TDA framework.
We calculate pairwise WD between the persistent diagrams
of the timesteps for all subjects within the same data
cohort.

Let,

Si = Subject i, where i ∈ {1, 2, . . . , 316}

Tk = Number of time steps for data cohort k,

where k ∈ {754, 336, 86}

PSi,t = Persistence diagram for subject Si at time t,

where t ∈ {1, 2, . . . ,Tk}

dW (PSi,t ,PSj,t ) = Wasserstein distance between PSi,t
and PSj,t

The TDA distance matrix for a given subject Si in cohort k
is defined as:

D(Si)t1,t2 = dW (PSi,t1 ,PSi,t2 )

for t1 ∈ {1, 2, . . . ,Tk} × t2 ∈ {1, 2, . . . ,Tk} (1)

In Eq. 1, we compute the pairwise Wasserstein distance
between persistence diagrams at times t1 and t2, which gives
a Tk × Tk distance matrix for each subject Si. We have
three data cohorts (fhigh = 645ms, fmedium = 1400ms, and
flow = 2500ms) with different timesteps (754, 336, 86). Thus,
we get 316 adjacency matrices for each data cohort with size
(754 × 754), (336 × 336), and (86 × 86), respectively.
These high-dimensional adjacency matrices are complex

and cannot be analyzed by statistical methods. To make
it interpretable by the statistical methods and for better
visualization, we apply the multidimensional scaling (MDS)
technique to reduce the dimensionality of the matrices. After
this stage, we get 316 adjacency matrices for each data
cohort with sizes (754 × 2), (336 × 2), and (86 × 2).
The two-dimensional MDS results are plotted using scatter
plots that give an intuition to use clustering to calculate the
similarity between the TRs. We apply the k-means clustering
technique to the MDS results to get the number of clusters for
the reduced-sized matrices. As k-means clustering requires
configuring the number of clusters n before the cluster com-
putation, we choose n using a well-known approach called
Silhouette analysis. Using Silhouette analysis, we choose
n that gives the maximum Silhouette score for the given
adjacency matrices between the range from 2 to 16 [58], [59].
After calculating the number of clusters for all three data
cohorts, we get the number of clusters for all 316 subjects
across these data cohorts. A similar number of clusters for
the same subject across three data cohorts will indicate the
similarity between the subjects for different data acquisition
parameters (different TRs in our case). If we get significant
similarity between the TRs, we can conclude the resiliency
of persistent homology for dynamic functional connectiv-
ity derived from rs-fMRI with different data acquisition
parameters.

We use Matlab during the data preprocessing steps and
Python for statistical analysis. For the topological data
analysis framework, we use Gudhi library [60], [61] to
compute the 0-dimensional barcodes from FCNs and to
calculate WD distances between the persistent diagrams.
We also use scikit-learn library for multidimensional scaling
and cluster calculation [58].

IV. NONTDA-BASED DATA PROCESSING PIPELINES FOR
RS-FMRI DATASET
To assess the effectiveness of our TDA pipeline pre-
sented in Section III, we implement three alternative
nonTDA-based data processing pipelines for comparative
analysis. Section IV-A provides a detailed walkthrough of
a direct time-series clustering pipeline. In Section IV-B,
we show a pipeline that employs Principal Component
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FIGURE 4. Direct time-series clustering pipeline that bypasses
dimensionality reduction of the high dimensional temporal datasets.

Analysis (PCA) for dimensionality reduction and clustering.
Section IV-C outlines a traditional functional connectivity
network (FCN) analysis pipeline tailored for brain network
datasets. As the datasets are in mat format, for data
preprocessing, we utilize Matlab to process the raw fMRI
time series, handle missing values, and construct functional
connectivity networks. Python is used for all subsequent
analyses, including dimensionality reduction, clustering, and
statistical testing. We use scikit-learn library for principal
component analysis, multidimensional scaling, and k-means
clustering [58].

A. DIRECT TIME-SERIES CLUSTERING PIPELINE
Our first baseline pipeline is the nonTDA-based direct
clustering pipeline. It implements a direct clustering approach
on the temporal rs-fMRI datasets without any dimensionality
reduction or graph construction steps. As shown in Figure 4
the input of this pipeline is the timestep# × 113 × 113×
where 113×113 corresponds to the spatial resolution of each
of the individual FCN capturing the pairwise connectivity
strengths among the 113 spatial regions of the brain. The
timestep# is respectively 86, 336, and 754 for the three
temporal frequencies flow, fmedium, and, fhigh respectively.
Directly clustering multivariate FCNs poses challenges

due to the high dimensionality of the data. To mitigate this,
we flatten the 113×113matrices into one-dimensional arrays
of length 12, 769, resulting in timestep# × 12, 769 sized
matrices for each of the subjects for each data cohort prior
to clustering. This reshaping transforms the data into a
format amenable to traditional clustering algorithms. Similar
to the TDA pipeline, we then apply the k-means clustering
technique to reshaped matrices. We utilize the silhouette
analysis method to determine the optimal number of clusters,
denoted as n, within the range of 2 to 16, ensuring the selec-
tion of the cluster configuration with the highest silhouette
score.

After calculating the number of clusters for all three data
cohorts, we get the number of clusters for all 316 subjects
across these data cohorts. The subsequent step defines the
statistical analysis phase, where we perform pairwise and
cohort-wide set overlaps of the number of clusters. Similar to

FIGURE 5. PCA-based dimensionality reduction and clustering pipeline
where the high dimensional data is reduced to 2 principal components
capturing the most variance before applying clustering algorithm.

the TDA pipeline, the key hypothesis is that robust clustering
solutions should exhibit consistency across subjects and
sampling rates. To evaluate this, we statistically compare
the identified cluster numbers across cohorts using pairwise
and group-wise similarity scores. Higher overlaps in the
optimal cluster numbers between the three temporal sampling
periods and higher pairwise set overlaps will indicate
higher similarity scores, thereby affirming the robustness
of the direct clustering approach to variability in sampling
rates.

B. PCA-BASED DIMENSIONALITY REDUCTION AND
CLUSTERING PIPELINE
After establishing the baseline with the direct clustering
approach, we introduce a principal component analy-
sis (PCA)-based dimensionality reduction and clustering
pipeline to address the high dimensionality challenges in
the temporal FCN datasets. Figure 5 displays PCA-based
dimensionality reduction and clustering pipeline. This
pipeline incorporates a three-step process involving PCA for
dimensionality reduction, k-means clustering, followed by
statistical analysis.

Like the prior pipelines, this pipelines takes as input
matrices of size timestep#× 113× 113. where the timestep#
values are 86, 336, and 754 for the temporal frequencies
flow, fmedium, and fhigh, respectively. We flatten the 113 ×

113 functional connectivity matrices into one-dimensional
arrays of length 12, 769 to reorganize our data into a
2D matrix suitable for PCA, where each row represents
a timestep and each column represents an element of the
flattened connectivity matrix. After flattening, the input to
PCA would indeed be a 2D matrix with dimensions: for flow:
86× 12, 769, for fmedium: 336× 12, 769, and for fhigh: 754×

12, 769. This reshaping transforms the higher-dimensional
tensor data into a 2D matrix format required by PCA to
identify the top principal components capturing the most
variance in the connectivity patterns across time. Applying
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PCA on the flattened 12, 769 dimensional data then allows
us to reduce the high dimensionality down to the most
informative 2 principal components before clustering. In this
stage, we apply PCA to reduce the dimensionality of
the flattened timestep# × 12, 769 matrices. Specifically,
we use PCA to project the data onto a lower-dimensional
subspace while retaining as much variance as possible. For
each temporal frequency (flow, fmedium, fhigh), we reduce the
dimensions from 86 × 12769 to 86 × 2 for flow, 336 ×

12769 to 336 × 2 for fmedium, and 754 × 12769 to 754 ×

2 for fhigh. The resulting PCA-transformed matrices, now
of size timestep# × 2, capture the most salient features of
the original data. This dimensionality reduction facilitates
subsequent clustering by focusing on the most informa-
tive components while significantly reducing computational
complexity.

Following the PCA-based dimensionality reduction,
we apply k-means clustering to identify patterns and group
subjects based on the reduced feature space. Similar to the
direct clustering approach, we leverage silhouette analysis
to determine the optimal number of clusters (n) within the
range of 2 to 16 for each temporal frequency that maximizes
clustering quality. The resulting cluster assignments provide
a compact representation of the original data while capturing
meaningful variations across subjects and temporal sampling
rates.

To assess the performance of the PCA-based pipeline,
we follow a similar statistical analysis phase as in the direct
clustering approach. The number of clusters obtained for
all subjects across the three temporal frequencies undergoes
pairwise and cohort-wide set overlap analysis. This compar-
ison helps evaluate the consistency of clustering solutions
across different temporal sampling periods. The hypothesis
remains that a robust clustering solution should exhibit
coherence in identified clusters across subjects and temporal
frequencies. We use pairwise and group-wise similarity
scores to statistically compare the optimal cluster numbers.
Higher overlaps in cluster assignments between temporal
sampling periods and increased pairwise set overlaps indicate
greater stability and reliability in the face of variability in
sampling rates.

C. TRADITIONAL DFCN CLUSTERING PIPELINE WITH
MDS-BASED DIMENSIONALITY REDUCTION
We develop a traditional dynamic FCN (dFCN) analysis
pipeline with similar steps to the aforementioned TDA-based
pipeline for the rs-fMRI dataset. The traditional dFCN
analysis pipeline is illustrated in Figure 6. Analysis steps
include extracting subject-specific DFC (dynamic functional
connectivity) matrices, calculating graph metrics, dimen-
sionality reduction via MDS, clustering with k-means, and
computing cluster overlaps. Instead of the persistent diagrams
or applying any persistent homology methods, we use a
correlation coefficient between the timesteps for all three data
cohorts.

FIGURE 6. Traditional dynamic functional connectivity network (dFCN)
clustering pipeline. This non-TDA pipeline has a similar statistical analysis
structure to the TDA pipeline, allowing comparison of approaches for
assessing the robustness of persistent homology on temporal rs-fMRI
data.

Let,

Si = Subject i, where i ∈ {1, 2, . . . , 316}

Tk = Number of time steps for data cohort k,

where k ∈ {fhigh = 754, fmedium = 336, flow = 86}

ASi,t = Adjacency matrix for subject Si at time t,

where t ∈ {1, 2, . . . ,Tk}

The distance matrix for a given subject Si in cohort k is
defined as:

D(Si)t1,t2 =

√√√√ M∑
m=1

N∑
n=1

|at1mn − at2mn|2 (2)

In Eq. 2, M ,N are the dimensions of the adjacency
matrices. We compute the Euclidean distance [62] between
adjacency matrices at times t1 and t2, which gives 316 dis-
tance matrices of sizes (86×86), (336×336), and (754×754)
for the three cohorts respectively. In this stage, we acquire
316 matrices for each of the data cohorts with the size of
(86 × 86) for flow = 2500ms, (336 × 336) for fmedium =

1400ms, and (754 × 754) for fhigh = 645ms. Then,
we follow a similar pipeline of the TDA framework to
keep the comparison uniform. We reduce the dimension of
the matrices using two-component multidimensional scaling
(MDS) and then calculate the number of clusters (n)
on the reduced matrices using k-means clustering. We also
use the maximum Silhouette score to choose the value of
n within the range from 2 to 16. Finally, this pipeline will
also produce the number of clusters of the MDS for every
316 subjects for all three data cohorts. Our hypothesis will
be proven right if the TDA pipeline gives a better similarity
score than the non-TDA pipelines.
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FIGURE 7. Clustering result for subject 8 across different temporal periods: flow = 2500ms (left), fmedium = 1400ms (center),
fhigh = 645ms (right) using TDA-based temporal clustering pipeline (top row). Comparative results for the same subject employing
nonTDA-based pipelines, including PCA-based dimensionality reduction and clustering (middle row), and the traditional dFCN clustering
pipeline (bottom row).

V. RESULTS
All of the TDA-based and nonTDA-based pipelines start
with embedding one FCN for each rs-fMRI scan as an
adjacency matrix (section III-B). In this stage, we get

371, 616 adjacency matrices ((316 × 86) + (316 × 336) +

(316 × 754)) for three temporal sampling periods (fhigh =

645ms, fmedium = 1400ms, and flow = 2500ms). Each matrix
has a dimension of 113 × 113. In the second stage of the
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pipelines, we embed the FCN using Pearson’s correlation
coefficients and range the values between 0 and 1. In the
TDA-based pipeline, the third stage extracts 0-dimensional
persistent barcodes from the matrices using persistent homol-
ogy (Section III-D). In the nonTDA-based pipelines, instead
of using persistent homology, we use correlation coefficients
between the timesteps for the three temporal sampling
periods (TRs) for traditional FCN analysis(Section IV-C).
Both the direct clustering and PCA-based dimensionality
and clustering pipeline reshape the input matrices from
timestep# × 113 × 113 to timestep# × 12, 769 where
the later one applies PCA based dimensionality reduction
before applying clustering. For all of the TDA-based and
nonTDA-based pipelines, we continue to the statistical
analysis phase, where we compute the cohort-wide and
pairwise cluster intersections of the subjects for all data
cohorts.

In the TDA-based pipeline, we use the Wasserstein
distance metric on the persistent diagrams for all the subjects
for all three temporal sampling periods. On the contrary,
in the nonTDA-based traditional FCN analysis pipeline,
we directly use the correlation coefficient on the extracted
FCNs. Adjacency matrices generated after this stage in
these pipelines are similar in size for respective temporal
sampling periods. For temporal sampling period flow =

2500ms with 86 timesteps in the TDA-based pipeline, each
subject yields adjacency matrix WD of size (86 × 86)
where WDij represents the pairwise Wasserstein distance
between timestep i and j. In the traditional FCN analysis
pipeline for the same data cohort, each subject yields
adjacency matrix A of size (86 × 86) where Aij represents
the pairwise norm between timestep i and j. Similarly,
fmedium = 1400ms and fhigh = 645ms yield adjacency
matrix of size (336 × 336) and (754 × 754), respectively,
for each of the subjects during TDA and traditional FCN
analysis. This high dimensionality of the matrix size makes
it challenging to apply statistical analysis. For this reason,
we applied multidimensional scaling (MDS) and reduced the
size of the matrices to fit into a two-dimensional surface
for all the data cohorts(flow: (86 × 2), fmedium: (336 × 2),
fhigh: (754 × 2)). Then, we applied clustering on the MDS
data using the k-means clustering algorithm with Silhouette
analysis to select the number of clusters. Finally, we get the
number of clusters for all 316 subjects for both of these
pipelines.

For the other two nonTDA-based data processing
pipelines, we first reshape the input matrices. In the
direct time-series clustering pipeline, we flatten the 113 ×

113 matrices into 12, 769-dimensional vectors and calculate
the optimal number of clusters for each data cohort directly
on this reshaped high-dimensional data. In contrast, for
the PCA-based dimensionality reduction and clustering
pipeline, we flatten the FCNs and then apply 2-component
PCA to reduce the dimensionality down to 2 principal
components before clustering. This PCA step mitigates
the challenge of directly clustering high-dimensional

data. After PCA reduction to 2D, we determine the
optimal cluster numbers for each subject on the low-
dimensional PCA-reduced data. Both pipelines reshape
the data as a preprocessing step, but the PCA pipeline
has an additional dimensionality reduction phase prior to
clustering.

Figure 7 shows the clustering result for a single subject
(subject 8) for all three data cohorts (flow = 2500ms,
fmedium = 1400ms, fhigh = 645ms). The top row of the figure
represents the plotted clusters using the TDA-based pipeline,
and we see that each data cohort here has two clusters.
The second row shows the clustering result for same subject
using the PCA-based dimensionality reduction and clustering
pipeline. While the number of clusters remains consistent for
flow and fmedium in this pipeline, there is a notable discrepancy
in the number of clusters for fhigh. This suggests that
the pipeline can not effectively preserve robustness across
different data cohorts. The bottom row of the figure shows the
plotted clusters for the same subject using the nonTDA-based
traditional FCN analysis pipeline, and the number of clusters
varies for the data cohorts. As the number of clusters remains
unchanged for different temporal sampling periods with
similar shape using the TDA-based pipeline and varies largely
for the nonTDA-based pipelines, it shows the invariant of
the TDA pipeline. We cannot plot the clustering result for
direct clustering pipeline due to the elevated size of the data in
this clustering analysis (#timestep×12, 769), and the absence
of any dimensionality reduction techniques (MDS or PCA)
applied on the original data. Thus, this illustration gives an
intuition towards our hypothesis of the resiliency of persis-
tent homology-based methods to different data acquisition
parameters (temporal sampling periods) in brain rs-fMRI data
analysis.

To statistically compare the consistency of identified
cluster patterns across subjects for both the TDA-based
and nonTDA-based pipelines, we compute two similarity
metrics - the cohort-wide and pairwise cluster distances.
For the cohort-wide analysis, we calculate the absolute
difference in number of clusters between each subject’s
optimal solution. This provides a distribution of cluster
number distances indicating the spread/variability across
subjects. For pairwise analysis, we compute cluster distances
between each pair of data cohorts for the same subject.
The pairwise distances are aggregated to produce a dis-
tribution showing the overall pairwise consistency. Lower
cohort-wide and pairwise distances indicate higher similarity
and consistency in optimal cluster numbers. This quantifies
the robustness of each method to individual variations
and its ability to extract connectivity patterns that are
generalizable across populations. The metrics provide crucial
insights into the stability and reproducibility of the clustering
solutions.

A. COHORT-WIDE CLUSTER DISTANCE COMPARISON
We capture the number of clusters for all 316 subjects for
all three data cohorts for all the pipelines. We calculate the
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FIGURE 8. Cohort-wide cluster distance comparison between TDA-based
statistical data processing pipeline and nonTDA-based pipelines for all
temporal sampling periods flow = 2500ms, fmedium = 1400ms and fhigh =
645ms. In the TDA-based pipeline, more than 59% of the total subjects
exhibit a cluster difference less or equal to 1, indicating the highly robust
cluster patterns consistent across cohorts.

distance between the number of clusters for each subject
using:

distance(subjecti) = abs(subjecti2500ms − subjecti1400ms)

+ abs(subjecti1400ms − subjecti645ms )

+ abs(subjecti645ms − subjecti2500ms)
(3)

where subjecti2500ms , subjecti1400ms , subjecti645ms are the num-
ber of clusters for subjecti for the data cohorts flow = 2500ms,
fmedium = 1400ms, fhigh = 645ms respectively and abs
denotes the absolute difference.

The cohort-wide cluster distance analysis in Figure 8
reveals striking differences between the TDA-based and
nonTDA-based pipelines. For the TDA pipeline, the majority
of subjects (59%) exhibit a tight cluster number distance of
less than or equal to one across cohorts. This indicates TDA
identifies highly robust cluster patterns consistent across
individuals. In contrast, for the direct clustering pipeline, only
6% of subjects have a cohort-wide distance less than or equal
to one. For the PCA-based pipeline, this number rises to 19%
of subjects and for the traditional FCN analysis plummets
to 2% of subjects. The significantly lower consistency
highlights the inability of these nonTDA-based techniques to
extract stable brain states generalizable across the population.
Unlike the topological approach, these methods are heavily
influenced by individual variations. Overall, the cohort-wide
analysis affirms the resilience of TDA for rs-fMRI analysis,
which is able to mitigate differences in data acquisition
parameters.

B. PAIRWISE CLUSTER DISTANCE COMPARISON
Additionally, we perform a pairwise comparison of the
number of clusters for the data cohorts for all of the pipelines.
The value of abs(subjecti2500ms − subjecti1400ms ) represents the
pairwise distance on the number of clusters for subjecti for
the data cohorts flow = 2500ms and fmedium = 1400ms.
Similarly, the value of abs(subjecti1400ms − subjecti645ms )

FIGURE 9. Pairwise cluster distance comparison between TDA-based data
processing pipeline and nonTDA-based pipelines. Comparison
between temporal sampling fmedium = 1400ms and flow = 2500ms (top
row), temporal sampling fhigh = 645ms and fmedium = 1400ms(middle
row), temporal sampling fhigh = 645ms and flow = 2500ms(bottom row).

and abs(subjecti645ms − subjecti2500ms) represent the pairwise
distance on the number of clusters between the data cohorts
(fmedium = 1400ms, fhigh = 645ms) and (fhigh = 645ms,
flow = 2500ms ) respectively. This pairwise comparison
will help to identify whether there is a closer similarity
between the data cohorts in the TDA-based pipeline over
the nonTDA-based pipelines. Figure 9 shows the pairwise
distance between the data cohorts in the TDA-based pipeline
and in the nonTDA-based pipelines. In the TDA pipeline,
the pairwise distance between data cohorts fmedium and fhigh
show the highest similarity (78% matching within distance
2). The data cohort pair fhigh and flow has a similarity of
77% within distance two, and data cohort pair flow and
fmedium has a similarity of 74% within the same distance.
This high similarity between the data cohort pairs proves
the efficacy of persistent homology-based techniques on
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the rs-fMRI data analysis with different temporal sampling
periods. In the nonTDA-based direct clustering pipeline,
we see the maximum similarity between the data cohorts
fmedium and fhigh with 75% similarity within distance 2. The
other data cohort pairs ((flow, fmedium) and (fhigh, flow)) has
23% and 21% similarity within the same distance. In the
PCA-based dimensionality reduction and clustering pipeline,
we see the maximum similarity between the data cohorts
fmedium and flow with 60% similarity within distance 2. The
other data cohort pairs ((fmedium, fhigh) and (fhigh, flow)) has
50% and 55% similarity within the same distance. In the last
nonTDA-based traditional FCN analysis pipeline, we see the
maximum similarity between the data cohorts fmedium and
fhigh with 40% similarity within distance 2. The other data
cohort pairs ((flow, fmedium) and (fhigh, flow)) has 23% and
22% similarity within the same distance. This low similarity
between the data cohorts using nonTDA-based pipelines
indicates the inefficiency of the nonTDA-based method
for analysing rs-fMRI data with different data acquisition
parameters.

C. EVALUATION USING A CLINICAL ADHD DATASET
To validate the robustness of our TDA-based temporal
clustering pipeline, we conducted a comparative evaluation
against the traditional dynamic functional connectivity net-
work (dFCN) pipeline using the publicly available ADHD-
200 dataset [63], [64]. We constructed two cohorts based
on the temporal resolution (TR) of the rs-fMRI scans:
TR=2s and TR=2.5s. Each cohort comprises ADHD and
control subjects. The TR=2s cohort includes 290 control
and 285 ADHD subjects, while the TR=2.5s cohort consists
of 189 control and 68 ADHD subjects. Figure 10 presents
a systematic comparison of clustering consistency between
the TDA-based pipeline (left column) and traditional dFCN
pipeline (right column) across ADHD and control groups.
Each subplot shows the distribution of the number of clusters
across all subjects within a group and TR condition. The
x-axis denotes the number of clusters (ranging from 1 to 16),
and the y-axis indicates the percentage of subjects exhibiting
each cluster count.

In the TDA-based pipeline (left column), we observe
a strong peak at 2 clusters for both ADHD and control
subjects across TR=2s and TR=2.5s. This suggests a high
degree of consistency in the extracted brain state patterns,
with over 80% of subjects in each subgroup consistently
showing two clusters. This invariance across different TRs
demonstrates the robustness of persistent homology and
topological features in summarizing the intrinsic structure of
time-varying brain connectivity.

In contrast, the traditional dFCN pipeline (right column)
exhibits significant variability in the number of clusters
across TRs. For both ADHD and control groups, the cluster
distributions are dispersed, with subjects assigned to a wide
range of cluster numbers, especially at higher TRs. For
instance, in the ADHD group (top right), the cluster counts

span from 3 to 15, with no dominantmode. This inconsistency
indicates the sensitivity of the dFCN pipeline to changes
in temporal resolution and its reduced ability to extract
reproducible brain state signatures.

This analysis highlights the advantage of using topological
features derived from persistent homology over traditional
correlation-based approaches. While dFCN pipelines are
prone to capturing noise and suffer from over-fragmentation
of temporal brain states, the TDA pipeline produces stable
and interpretable cluster structures. These findings support
the hypothesis that TDA provides a more reliable abstraction
of temporal dynamics in brain connectivity, particularly in
clinical neuroimaging datasets with acquisition variability.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
We now analyze the computational complexity of the TDA-
based (Sec. III) and nonTDA-based pipelines (Sec. IV) up
to the statistical analysis stage. Since the statistical analysis
stage is common across all pipelines, our analysis focuses
on the pipeline-specific processing steps prior to statistical
testing. The computational trade-offs of the pipelines are
summarized in Table 1.
Let S denote the number of subjects (S = 316), T

the number of timepoints per subject (T = 754 in the
largest case), D the number of regions of interest (D =

113), and D2
= 12, 769 the number of features in each

flattened functional connectivity network (FCN). The number
of clusters explored in KMeans is k = 15, and the maximum
number of KMeans iterations is Tk = 300.

1) TDA-BASED PIPELINE
In the TDA-based pipeline, each subject and timepoint under-
goes persistent homology computation on its FCN, resulting
in a total cost of S · T · Cph. The computational cost for
generating a single persistence barcode is denoted byCph. For
our approach, using the Gudhi library with the Vietoris–Rips
complex and max_dimension=1 on D = 113 ROIs,
the time complexity for 0-dimensional persistent homology
scales as Cph = O(D2 logD), which yields approximately
86, 800 operations per timepoint. After barcode extraction,
each subject requires a pairwise Wasserstein distance matrix
between all timepoints (S ·T 2), two-dimensional MDS on this
matrix (S · T 2), and k-means clustering (S · T · k · Tk ). The
total computational complexity is:

O(S · T · D2 logD+ S · T 2
+ S · T · k · Tk )

which, for the largest case, evaluates to 20,871M.

2) DIRECT CLUSTERING PIPELINE
For direct clustering, all FCNs for a subject are flattened into
a (T × D2) matrix, and k-means clustering is applied in the
high-dimensional space. The complexity is:

O(S · T · D2
· k · Tk )

which evaluates to 13,695,004M.

VOLUME 13, 2025 172273



A. R. Shovon et al.: Topology Assisted Clustering of Temporal fMRI Brain Networks With Use-Case

FIGURE 10. Comparison of the number of clusters obtained using TDA-based pipeline (left column) vs traditional dFCN pipeline (right column) for ADHD
(top row) and Control (bottom row) groups across TR=2s and TR=2.5s. The TDA pipeline shows high consistency reflected by higher similarity (≥ 80%) in
the number of identified clusters. The nonTDA-based traditional dFCN pipeline exhibits variability and sensitivity to TR differences.

TABLE 1. Computational trade-offs of each pipeline up to the statistical analysis stage. The second column shows the general Big-O notation, while the
third column gives the evaluated value in millions (M) for the largest values of the variables denoting S = 316, T = 754, D = 113 (D2 = 12,769), k = 15,
Tk = 300. Example: For TDA-based: for the largest case, evaluates to 316 · 754 · 86,800 + 316 · 7542 + 316 · 754 · 15 · 300 = 20,871 M.

3) PCA-BASED PIPELINE
In the PCA-based pipeline, the (T × D2) FCN matrix is first
reduced to two dimensions using PCA, which has complexity
S · T · (D2)2 = S · T · D4 per subject (due to SVD
on high-dimensional data), followed by k-means clustering
on the reduced matrix. The total computational complexity
is:

O(S · T · D4
+ S · T · k · Tk )

which for the largest case evaluates to 38,860, 145M.

4) TRADITIONAL DFCN CLUSTERING PIPELINE
In the traditional dFCN pipeline, for each subject we compute
a pairwise Euclidean distance matrix (T×T ) between allD×

D adjacency matrices at all timepoints, with a cost of S · T 2
·

D2. This is followed by the same S ·T 2 MDS embedding and
S ·T · k ·Tk k-means clustering as in the TDA-based pipeline.
The total computational complexity is:

O(S · T 2
· D2

+ S · T 2
+ S · T · k · Tk )

which, for the largest case, is 2,290, 525M.
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TABLE 2. Systematic comparison between TDA-based and NonTDA-based data processing pipelines for rs-fMRI dataset.

E. COMPARISON BETWEEN TDA-BASED AND NON-TDA
BASED PIPELINES
We extensively evaluated the accuracy and robustness
of our TDA pipeline for rs-fMRI analysis on a large-
scale healthy control dataset comprising 371,616 adjacency
matrices across 316 subjects as well as a clinical ADHD
dataset comprising of 832 subjects. Comparisons are made
to three alternative approaches - direct clustering, PCA, and
traditional FCN analysis.

Table 2 summarizes the systematic comparison between
TDA-based and NonTDA-based data processing pipelines
in terms of methodology, dimensionality reduction, cluster
interpretability, robustness (cohort-wide and pairwise simi-
larities), as well as their advantages and limitations. Clearly,
the TDA-based pipeline demonstrates significantly higher
robustness, interpretability, and consistency across different
temporal data acquisition parameters, albeit with higher
computational overhead, when compared to the NonTDA-
based methods. The NonTDA-based pipelines vary in their
advantages–such as simplicity, computational efficiency, and
low computational cost–but generally exhibit reduced robust-
ness, higher noise sensitivity, and lower interpretability. The
results demonstrate TDA’s superior ability to extract robust
and invariant topological signatures intrinsically linked to
resting-state functional architectures. Remarkably, the brain
states identified by TDA exhibit high consistency across
the three sampling frequencies, affirming resilience to
acquisition variations. This also highlights TDA’s efficacy
in mitigating non-neural variability and capturing funda-
mental dynamics as compared to conventional techniques.
By applying the persistent homology technique to filter
noise and reveal salient connectivity motifs, TDA provides
a principled graph-free technique for preserving temporal
dynamics of complex rs-fMRI data. These findings establish
persistent homology as a powerful approach for analyzing
temporal patterns and validating TDA as a promising
pipeline for robust discovery of data-driven functional brain
states.

VI. DISCUSSION
MRI scanners around the globe vary in their configurations
and field strengths. This variation leads to a certain level
of noise in the data collected due to non-neural differences
introduced by the diverse scanner setups and data collection
parameters. This noise complicates the process of combining
data from different scanners into a single, large dataset for
unified analysis. Consequently, most fMRI brain network
research is localized, limited by the number of subjects that
can be scanned at a single location. This limitation reduces
the sample size and, therefore, the applicability of the results.
One solution is to conduct studies across multiple sites closer
to the target population. However, the noise introduced by
using different scanners and parameters diminishes the neural
effects of interest, thereby reducing the effectiveness of such
multi-site efforts.

We addressed these issues in our previous paper [8] in
the context of characterizing brain networks using static
functional connectivity. However, DFC is critical for under-
standing how the brain processes information dynamically
and how the interactions between different brain regions
change with time. It has been shown that DFC is very
important for characterizing the healthy brain [3], [4],
as well as in various brain disorders [5], [6], [7]. Therefore,
it becomes necessary to develop a TDA-based framework for
DFC so that investigations of temporal dynamics in the brain
are shielded from non-neural variability in the data.

We validated the effectiveness of the proposed Topolog-
ical Data Analysis (TDA)-based pipeline by contrasting it
with the conventional data analysis pipelines outlined in
Section IV. In the conventional pipelines, we employed direct
time-series clustering, PCA-based dimensionality reduction
and clustering, as well as traditional dynamic FCN pipeline
with MDS-based dimensionality reduction. The outcomes of
this pipeline strongly suggest that these conventional methods
fail to establish similarity across dynamic FCNs of the same
subjects obtained with different repetition times (TRs) and
acquisition parameters.
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On the contrary, for the TDA-based metric, we demon-
strated both qualitatively and quantitatively that the metric
remains statistically consistent across the same subjects,
regardless of the sampling period used to acquire resting-state
fMRI data. This underscores the usefulness of TDA-based
analysis because, theoretically, data collected using different
parameters from the same subject should still represent the
same brain network dynamics.

VII. CONCLUSION
In this study, we have demonstrated the effectiveness of
Topological Data Analysis (TDA) in uncovering temporal
properties within resting-state functional magnetic resonance
imaging (rs-fMRI) data. Our research highlights TDA’s
robustness in the presence of varying temporal sampling
rates, surpassing traditional connectivity analysis methods.
Key findings emphasize TDA’s remarkable stability, with
59% of subjects consistently showing clustering results
across different temporal sampling periods (2500ms, 1400ms,
645ms), compared to less than 19% using nonTDA-based
methods. TDA also reveals strong pairwise similarities
between sampling periods, showcasing its ability to capture
temporal dynamics. The robustness of the TDA pipeline
is further confirmed through evaluation on clinical ADHD
datasets, where it achieves high consistency (≥ 80%)
in clustering outcomes across different sites and scanning
conditions. In conclusion, our study establishes TDA as a
valuable tool for revealing temporal nuances in rs-fMRI
data, offering a level of robustness unmatched by traditional
methods. Through persistent homology, TDA provides a
stable, invariant representation of dynamic brain connec-
tivity, promising valuable insights into complex temporal
patterns in resting-state fMRI data across diverse acquisition
parameters. To promote reproducibility, we have made all
our code, scripts, data, and documentation available at
https://github.com/harp-lab/TemporalBrainPH.
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